a2 United States Patent

Bijani et al.

US009268539B2

US 9,268,539 B2
*Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) USER INTERFACE COMPONENT (56) References Cited
(71) Applicant: ACCENTURE GLOBAL SERVICES U.S. PATENT DOCUMENTS
LIMITED, Dublin (IE)
6,246,403 Bl 6/2001 Tomm
(72) Inventors: Pramed Bijani, Mumbai (IN); g’g}z’?gg gé ggg% ;e;ril;l‘i]r;%sther
Siddharth Mehrotra, Mumbai (IN); 8,694,960 B2* 4/2014 Bijanietal. 717/112
Vikrant Shyamkant Kaulgud, 2004/0183832 Al 9/2004 Baccou
Bangalore (IN) 2006/0123345 Al 6/2006 Parimi
2009/0328010 Al 12/2009 Cao et al.
73) Assi : ACCENTURE GLOBAL SERVICES
() Assignee: ACCENTURE &1) FOREIGN PATENT DOCUMENTS
. EP 1770510 A2 4/2007
(*) Notice: Subject to any disclaimer, the term of this GB 2357348 A 6/2001
patent is extended or adjusted under 35 WO WO0-2005073847 A2 8/2005
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer. Fowler, Martin, “Inversion of Control Containers and the Depen-
dency Injection pattern”, Jan. 23, 2004, pp. 1-19.
(21) Appl. No.: 14/224,585 Ali, Mir Farooq, et al., “Building Multi-Platform User Interfaces with
(22) Filed Mar. 25. 2014 UIML”, Internet Citation, Nov. 9, 2001, pp. 1-12.
iled: ar. 25,
* cited by examiner
(65) Prior Publication Data Y
US 2014/0282379 Al Sep. 18,2014 Primary Examiner — Chuck Kendall
Related U.S. Application Data (74) Attorney, Agent, or Firm — Mannava & Kang, P.C.
(63) Continuation of application No. 13/424,895, filed on
Mar. 20, 2012, now Pat. No. 8,694,960. &7 ABSTRACT
51y Int. Cl A user interface component is displayed according to an
Gh Gn 0;5 F 9 V45 (2006.01) implementation language independent description. Animple-
GOGF 9/44 (200 6. 01) mentation language dependent specification for the user com-
' ponent is created from the implementation language indepen-
(52) US.CL)) dent description. The user interface component is created and
CPC .. GOGF 8/38 (2013.01); GOGF 8/41 (2013.01); displayed according to the implementation language depen-
GO6F 9/4448 (2013.01) dent specification.
(58) Field of Classification Search

None
See application file for complete search history.

Determing
DataStore

21 Claims, 9 Drawing Sheets

182

Spring
iconfig file:

[CSVParse:

7
/ Flax(vugm/ Convert user|
XLSParser|

data to Valug|
Objects
S111-1using Parser|

Engine

DBParser

DRL
(Rule files)
154
WM
(Template
filgs)

Veiocity Engine
Invoke
Velocity
Engine

U.S. Patent Feb. 23,2016 Sheet 1 of 9 US 9,268,539 B2
Read inputs
3105 provided by Use 5101
Show Usage Check input
152
S107- /
Spring

Invoke Spring Sprin

$109—1 Identify the Parser dependency | comE)ig fﬁes
156 injector —
: {FI UIDTO /1 Rules Engine
CSVParser 8)((\,) Convert user g

XLSParser]] k< /| |data to Value Invoke Rules|| | DRL
° Objects Engine (Rule files)

DBParser S111-"using Parser [/

150 154
! Velocity Engine

Generate MXML \!,”ivokte . VMI
S113-7 using the VOs elocty (Template

Engine files)

| ~
Compile MXML (

Show error
to user

Did code compile

Show the SWF to
§121-—-user in the system's
default browser

FIG 1

U.S. Patent Feb. 23, 2016

Sheet 2 of 9

i

=]

GSV/Flat file

[
XLS

——
=}

|

US 9,268,539 B2

5205
/

§203~ Rule engine to identify datastorg
and pick the appropriate parser

[

Dependency Injection

loading of parsers

and lazy

5207
/
Tool help link and
terminate process
5209~ Datastore Parser
|
8315 | 3313 Flex data VO [~_5211
Pre-defined Templates=—iTemplating Engine*————l

i

5219~

Flex compiler,

Batch

program

-

Mxm|

~-5217

SWF

S221

FIG 2

U.S. Patent Feb. 23,2016 Sheet 3 of 9 US 9,268,539 B2

(Im a Button!) (im a Combo Box! | v)

(X
301 303

FIG 3

U.S. Patent Feb. 23, 2016

Mxml

5403
(

Parse MXNL File

|

|]

5415~

Components with
missing style name

I

417~

Components with
invalid style name

Style)
8407\ Validation [|---= ———> Add to mva“d
Engine ' style list

l
1
|
|

\Y4

Sheet 4 of 9 US 9,268,539 B2
<O»
05S 5401
5405
\
Load Styles
5409 5413

Add to missing
style list

5411

FIG 4

US 9,268,539 B2

Sheet 5 of 9

Feb. 23, 2016

U.S. Patent

G 9l

NAS

Temmm% % OI0C) W; 507 20413 n& 53015014 H& uojzepaq Aﬂ_ soparer (3 _ swalgeid |

1]

[srqepurg]

Q- JULIpImOoyprid tea orpqnd
[2198purg]

[mu . 2afqo:ddyuremw ea srjgnd
[o19epurg]

()aoue)suyioR ~apuongLou0nIn) dd0(= 3PROLIACUBIIND I : IPEIBALIND Iva a1EA1Id

Sprimpeefqo sine o xw ysodug
tuorteor|ddy - s100 - xw produw
UIVEMA spanc xw paoduwy

SIUBAHESOID SIUdAS XU yEodu]
SUOUDOI0)ARE Y SUOIID |00 XW 1roduil
‘raRrurpdndog-siafewew xw pyodwr
10afgo AR dsIgXe [2100 XW 3rodm
resagyiasaysiusan adoxw produ
DOMIORODISUT T X suottaa|fod xuw yrodur
fUOTIOD[{0DARIIV STONO0[[0o xu prod]
a0y sjospuos xw prody
tMopurmapL sirurnod xw yrodun
frefuuepdndog sieSewew xw yrodun
Guweamyne g siuoas odr xuw prodwy
feperBgAdUSLIN) IO drmarnd swdl jrodun
TOAAUALINI IO 0a tepoun oamame dwdl 1rodw;
hxoigrddyso Axoad peponr samamd owdl jrodws
SOPBOBAADHSIIND aswarnc awd{ troduy
TIOIRIPTINAZURUN A4 D RIS [maTA damaIne owd [1rodwy
CHOIRIPINAOUILIND JJOQ MAT1A damaand owd{ rodwt
TOAQIITADSSINISSNYJ DG oA fapotl aamaanc omd M yrodm
SOAAINUA RS TAOUBIIND J 4D eajepo aamaind owd] rodu;
Ivivaolis

<ydriog

<.008.=341oy ureid, = 3wuNo 1415 | 2Inj0sqe, =1n0ke]

wau=lROD[ISULWN |y 10zapuarsion) py sywoucdwod Ay mara oawoeind owdl, =roz0puos jsujwx

Sprsorasamornd swdl,=5193[1F [SUFWN , , oamd JICMIWEL NI R SEIFG owd [wod =M] I sujux

s MOPUIM INUTIUX JWYW/GO0Z/ MO 3qope ma// 1Ay =X (ST S[0POWNYDSD AWSIN JXLIREY
o2, 008, = B10q { () 3101) o9 pdwonuonears ure(d, - 0WeNI[A)S 9IN]0SqR, =In0Ae|
=[BOO] ISUTWXR , . 1olopudl s 1y p) siuwducdwoy Ay ‘marn samsand owdl, =raiapuss sujwsx
Ap o mera samesnd swdf 19371) © sufw swdyrcmowray XLRRUSRILG Dwed{ WO, =M] ISEIY
=8p3 Lk =MOPUIA ISUTUX | (WX /907, mod squpe mmm/; digy
{8 I, =RATPOINY T, =UOISIIA fL

xw supwx ucneasyddy (xurs-

SN

I

X

1od [5 = o
ayoes 75
L8

vodxs £E

s HE

FIER N ¥)
afo L
PIROGUSEP LB
Jjeogdang £3E
wyuoBjeatelare L6
wyobe L2
uooe L@
uonEdoe
Jewsog L4
JBSICENNE &.m_

uesguanigabes

Diubufosd/Buuesiopirsioaloid/n 1600 L 0z/sayouer) Buneapp. =t
OAUTULUAS/ 00 8p021B00E pUp-mby; © diiu] 5e), dolaBeIC-IMS « paric
Ond R

soadead udnd -

sso'saifis N
BUAIN3ddOC] [
T saanosal o

INFYIAW -

siel 2B

5403 Lo

(L g: |
sbunes 2@
] laalgefisay E3H
BEsel A
SLLD EEE
aamegX0 (0
ienoon S E

% arkuenn)ddod B

" :Mﬁ @
Oa

GFER N DHD |- W B @0]

s BBl oBl Y oe d-
HlIoeaolFgE-E|

disl_MOpufk oy [1eun 3RS xeid| soeouvoq (Y usems sievdsasfi ung el wBas owBre 1p3 o7

\

8500 T EXUAU BN L7500 0SB T05 U SIS KB - BRET)

10G

US 9,268,539 B2

Sheet 6 of 9

Feb. 23, 2016

U.S. Patent

9 94

Temvm% K 808u07 m_ Bo~ soug n,u& mmBmois.@?EsﬂooQ ﬂ_ 20pEAR) Ob SWISB0Ld mw_

K i]
(+] lorarprdl UL
Q= UL Ippsoyp1ag ava orjgnd e
[erqepurg} Emmc:mmu
‘v s 3oefqoiddvurew Jea oryqnd ERTICOINY
[ofqepuig] wyjlobiesboinas !
f()osueisupiad c apeorgAdudIIn) JJD (] = 9pEdE JOUOIINDII I (APBIRJIIND IRA DIeATId unuobE £ H
oo £
yunsesfqo o spn o xw jrodus uuBIOle L3 £
tonespddy ~ 9105 xm 1aodwt UBLIO0E L3I
Gncryn cospn c xm gyodws JPBLRIDE &m
e
SJUBAHSS0LD SIUAAL X dIodmy uies £
JUON0RIODARIIY SUCIION]|0D ¥ 1Iodul s hmﬁw
cideuepndndog sisSenru vu 1rodwr R g
poalgAerdsixe) i1 ei0 yw prodwr sbunies’ [
Syuaagppinsay sjusac ady xw yrodwr ﬁmu\mlu
WOIOB[[OISTTTIX sUon1a9jjos xu jrodw Rae
CWONAG[[0DABIIY SUOLIsa [0y ¥ jrodurt Buitessous (] @)
$3a01V sponues v jroduy ueeguanialessapy LR R
CAMOPUIARTIL], $I9UIBIT0 Y Su rodut [iuBuload/Buesiopaysisiont;, 5001 pz/seuonedq] Buiessps Mm‘mu
19Beuvydridod s1oSeuets W jIodu QPUNUAS/U0T-p009 3008 pupmby - A} 660 J0BRIT MG < ,M@.D
Suoaglne g siusaaody xwrrodur i O “ﬁ
foproRgAcuaLIn) 440 q 2awmand dwdf jrodug A0 ¢
topfowa i g g0 es apow sawsind owdf jsodu seuados o [
tAxord1ddy gy dxasd-pppow sawesind smd(jrodu et O
topesegAsusIn) g q sawaand omdf jrodw; tiedsero’ O
cieIpaN AU LIn)JdDadjeq mata - aamaInd s md({ yrodur o8 L2 [
(101BIPA N AdHAIIN) F I (T MO A dawaind o md{ jroduwy 3509918 ﬂ
TOARNUINDSSIMISSAY A J D 04 [epour dawsind s mdf 11odw XL AUSINDA DT [}
fopdinugredaplouaun)d dJdDq s epow samaind amd{ j1odwt $80UN0381 L 78
Ivivasli> ANFYIEN L2
1dus g Sl L2-6
<,008,-3uBray ,urepd, oweNo[KIS ,9)0]08qR =1N04E] sUool L2+
5 =180 ISULWX |, 310puar 1031} Bpp sinanodmon {jy mota oawornd owd(, «1215puat sujwx uq L2
Spysimonodwoed W soadsmarnd o wdl L SI8I[I [SUIWK . damd yIempmeiy xinewseipg mdl woo, wmay YTEUEY sbupos’ 6
UX BINPCINGRSD ANIINIXIIEN | - 14e40aNSo EAED
SUWERNAIKIS ,MIN[asqr, 10 Ly] syl LA
UDO]ISULLX L 310D URL S IR EDY f)Ua U0 dWOD AN Mot damaInd dmdl - 213 pULT ST WY 158 }muﬁ_
|] Cmopaaamsind dWd [, —SI0I[IF D SUTWR , , OATA YIOMAWRIL X INEW SBIP WAL WO, =/ S U my |] 9Br-X) (G
pJ ISUjwx v JaLANRROD L)
~ <4u§-3I0,=TWPOsUS [0], ~UOTSIZA WX, > A _@m_ &
- % awAoueindddod B * =

% 1oEbneN-oy _ Ayoseleid m& 1udx3 ofeyced B

Jgeasp O |easp ﬁﬂ_ Brgoq 4y 51

w|l ol 00O} GrR DB TS e P+ 0

dioy mopuiy 1Syl [19084]) BIAIS X8l

‘s .p-EleB(yondl-0l

B BICPROl FE-B

speomon [yseygs eioydoqam uny wolorg yoiesg sefinen ¥93 0

) |

ST FOUBIIE T D /S 30 NOSBI ORI BING ol - BAET 9

109 105

US 9,268,539 B2

Sheet 7 of 9

Feb. 23, 2016

U.S. Patent

A

(8-330,=20Ipodus ([, UOISIBA [TUN %

jeripimoyeird rea orjqud pieoqisep a1
[o1qepmig] 8jED|CaMD L
pau =toafqorddyurew sea arpqnd wypobesbelsre L5
[a19epusyg] wygrobie £z2-[
() ecunuysupiel - speorAouain)dd(= PPEVEASUOLIN) dA D] | SPUTE {LIND 1EA 21BALIO udgce L2
uoNescye Dmm
naeslqo spnc xw arodu UeuosE L
‘moriearjddy - a100 " xw jrodut seopeixe L5
uNTEnc sian s xw jrodu &a
o . weo g |
QURAYRSO[D) S1UVAY X W yrodum as 29 E
TUOIIDS{[ODARIIV SUONI00] (00 X W j1odun) pIng 3@
‘1eldeuepwdndog siedrurw X w produny sBupes’ £
3vslanyAeidsicixs iy aiea xwatodun . ,muﬂ
_ Ga
[eowen | {a] o] edigjosapy B Buibessow [~3-[)
[wac] [<] $S0'53AG | ‘owey 3)4 | OHOMBN Al ugsguaniCaliesson LB
@ yoelcudjn; 6001 0¢/s0upusaq] Bunesiopn B4R
pup-mby; - diy] g4 doigbesa- 1o < BB
gnduiony An
-9 ~ m l mm_:mnca ppng £9
»M‘wm“ﬁ p weloud O
CAXC SJUBWINDO(] AR gedsseo’
I gedsseo' O
‘1ojRIpapNAdUAl @
S103RIPOY, IR SIS T
‘opQnIUADSSAU dopyseg w ummm”womwaﬂ
oA AR TAou
.@ ANNLIN 28
Slusllindog
waoey AN
v ,=BOO] ISUJWX |, 1918DUOL SI1Y DI mO\. /llD sbuyos P
‘mm,«.f:.o:anAoUmE;s@; u>.Ee.:a.uEn:. =SI[IJ ISUJuLY —.ON. ../.;ExE ‘Gcw.c:oamoo. @ yRaksey _@D
wd (e BPY ISUTUY |, - MOPUIAM SUJWYX | JWXN/ 9T/ WOI 8COP 355wXa H
<rec, 008, =3YE 10, { () 1run), =0 .ﬂ =N @ [a] saoanosas 0| :ui oo ! Mw Lz &
.]8R0 SUJWX , . 1918pusl sId)yspy 5 & 3 \u :?@E
] Spysivsuodwoey Sy meraosawassnd owdl, =s103{1f sujwx .;Hl 1AUI0.C B Joj anfea e ndu; oses|d dom4XD _@H
Asswaind W] =GPy ISUIUIX , 4, =MODPUIM (SUJWX |, [WXW/9ONT/ U0 sqope 353\\ Ay, =xu supux toneoddy Xuws--j> ~1 BYLBNRPOO LT

&

P =)IE

=

X wxwAueunDddod &

=

% _Qm@;mzym& Ayoresa) w& Jaicidxg sfeyoey B

37 erep um_.m\aﬁ ﬁﬂ~ Bngea 4 &1 @] o| O]

=R =R A TR = R L O OO

G-0-% -]

2 s Blo@lly o ql-0
G109 v0lgE-O

dioH MOPUIAL 1S4 19%03yD BAIS xai4 wumozgo-ﬁmzwemﬁw%\s umy peloid yuess sebien Wp3 94

95107 -JIXU-AoUBIND 4 4 DGS3N0SSIENIBYB RS K8l - BAET)

US 9,268,539 B2

Sheet 8 of 9

Feb. 23, 2016

U.S. Patent

8 9l

3 q
EE e e M VA (3) ity et

B EAT A el) R e e A A e S EL T W S M R e s T v
WHSATCI I AWOdI0W,, & dwtN o[£1§ ANV 1L, 1u2ucdwe]) o0 gge :Joguapn sui] ||

mcm T T N L SAWRN ORGP
LJPUBJuong Dxw, yueuodwod Tyl ciaguan oury

Jlaoedg ixw, cuaucdwo) 1oo1ng] AqmoN el
LSMISTOPAPNANS, D jusnodwo] 1 ggy] aoqunN oulg

LJA9oedg D xw, usuoduwo) QL1 " 1AqunpN anyy

Tau] yum sauauodwo)y

LXOAH D Xw, juseodwo) D¢) I I0qWRN 2ulY
FAIPOPR{OUL, S 1usu0d WO 11 By IdqWaN dulT
psuotsnpaxg, usuodwe) i (L1 Idquwan Ul
LAe0udg oy, luauodwo) gl AN auyg

LSXOEH T xW, 3uauodwo) [1oyl JOqWnN U

o::,vbrau&a:m: crusuodumesy 1 ogp il Isguny aur

SAED tiusuodwe) i pgn IdgmuN U]

Lxa, jusucdue)) CCal Iagquiny aut]

R, cjuauedwoy Coopge i degunn sury

xw, Djuancdwoy Too9pay o Isqmny suiy

ROSIINSAN, juanedwo)y 1 SgGl L AAqunN suig
LJXOHH D xwW, Juaucdwo) Dl ppgi asquna aut

cxw, uanedwory Dl opga cIaqWuyN QU

W, yusuedwony fl gyl PNy sug

xw, juaucdnod - e DI qmny aury

Cxur, D juavedwody o 161 dequa auig

xur, s juoucdwo) oo gpg[cdeqwnN dul

s xw, T jusueduio) 1O 1agqunp sug

xur, juucdwol o [219qwaN dut|

Lxu, jusucdmon [19qunN 2ug

Wdroedg s xw, nusuedwo) U Geg e qunN aury
LIRS D xw, Tjmsuedmon 0 ggg IAQUINN B4

XOEH & X, juouodwul) .. 684 18U N UL
KOGA D ¥, D UBUOdWo) 1 fR6 : IFGUIRR FUET
—.ow DosoweN (A4S Turssrw gl sjuegodulo)

JAIPURHAIASY 31 3 Jojpiey 18Y08U 58 1A}S Xa) Bl 108 B

Tegm% * Bosuol m_ qo7 o a_ ssaufiorg @_ ;o_ﬁ_mamnﬂM sCpeARP O_ SUIBI00Id m

1A

su{wux

Spysipuodwon A motasamarnd sud{ =511 D sujwx , coawd jrome ey xinrerseipqomd{ wos =ay isuwN
Aoamaind owmdl

ST e !
,>xo::aa<m>~u Sxord: TnoE sawsind swdlyrodme
taproefhansrind g4 sawsind swdfyroduwe
frereipepAcusnn)geoqaieag mataoawaind surdf produst
frojepap AU Ny g4 marasamaind swdf produe
TOADNIUOSSIMSS R dd I UAT(epow 2awsnd ourdf proda
tepafinugreda sananny 4o q oa jepomsawmaind owdf yroduwt
vivaoli>
<adisgxm
<. 008.-1yS1ey jmyed, -5 weNetAIs dinjosqe =InoAs]
wxe IBOOTISU{WN | asaspuadsiaNip Sprsiuwoundwoe AN mala ;Eu::_ dwdf, =r3fapual isuimx
MOPUIM ISTJTUY | JWRW/GO(7/ WO 3qope smma,/ diy =X W (sujux ,:63\,25wu\/?m;mx_:32 N
< < 008, =148y O un) =arajdwo)uoieaso [uie d, =3 WENAILI8 ,010]08qR m1n0K8]
W =[O0 ISUIIY | 12 00PUA S0 ApsiusundwoD A Mo LI0PUAL IS U WX

Atoawmarnd ourdf,

=] SUIBIY |, —MOPUIM ISUTHIY | JWRIG00 /W0 Sqope MM 11T, =X W suwx o neoddy XWm-~ hd

Qi uuasiwog epogifioc pusymdy;

I v

ey
>1 m:%:,?c: 5 -
eaeaypayatueyxy [
m>mq AYOBNUNOIY [}
eAelsyoeuctepizn [I
,moE;c,_ucht\,_ < [}
enzfausenjuewrasul [}
zaef ayozneNesd [l
AR} BYSBDIUNATY Lol

Ysed 2 &
808D £
o) L3-8
podxa £2-[
e]
JUBUILOLLD 2]
ol o
plecqusep £
Deoideing L34
wiotiesbeisne -7
wiypeble £/
wose 318
uoy2a0ye L3
uBLE LY
s @;D
43
wos ghlE |

BuiBessa m m

deaquanuciebessen LR

Bubwiosd;Buues opsieloud o) 5uc L 0z/s8L0uRsg) Bueeyps g
dy z,ovao_mmm_o - MO ?&D

H-EHAR O

mmeonoa L, ng €
1lois’ O
yedssep Q-

S L

550 5913 0

WX AT 4d00 Iy
SSTN0SHEE g j

v -%n
13311 &L

08N X0 _m@m
Jaguepapor CRE

WS-pn,-8urposue o [, =n0rsIaA (WX A

[Ea «=

3 |uxbousiindddda B |1 o -

»® _owm@‘)m%mi ALOIEIBIH mt Iainiez abaytey 8

/-
33 fener 1§ %%?&D\ @w| o) OO

PP DG B Ba@0a

dor

S ol A RN NOR AR
Bl | Oac FE-O|

MOPUAL TS _L@_om;o B xyi %mo,csoa. yses eisydsesip umyl woslog yoBag el2Binef] o84

ST 5 R g o B BB o ST BT ©

US 9,268,539 B2

Sheet 9 of 9

Feb. 23, 2016

U.S. Patent

6 Ol
auvos
0.6 A 056 956 96
996 { b 4 ¢ § (
¢ g6
»| waaow asnow | | ¥3INd
— a I\ A
Fom] Y S S, T .
_ v ov6 _
i 896 v36 ~ | /| N
\| ves 26 |
YILNJWOD _ VY ¥ R ; !
ALOWIY | | > JOVANIAINI | |F0ov4uaUNI | |Fovuaint | | aovaual !
N T _— O\— Z— *
> MOMLEN 1¥0d 1¥0d IAINA SI IANA _
§ bog - IviNas 131NV | | TYNEEIXE | | dSIOauvH [\
z96 m !
m - I —
Snd WLSAS :
m o5 9z6 ¥ _
_ |
m ¥ v NON viva SWVHD0Ud I
: NVNO0Yd NOILYOITddV i
HOLINOW {—tfp| O LINN !
> o3an ONISSAD0U 7 s i
; ! w w w o6 v6 17—
856 _ :
m 096 t43 \ 0£6 Wvy _
m von AHOWIIN NTLSAS _
e e J

8¢6

US 9,268,539 B2

1
USER INTERFACE COMPONENT

PRIORITY

The present application is a continuation of U.S. patent
application Ser. No. 13/424,895, filed on Mar. 20, 2012 which
claims priority under 35 U.S.C. 119(a)~(d) to EP Application
11 004 453.4-2211, filed on May 31, 2011, which are incor-
porated by reference in their entireties.

TECHNICAL FIELD

The application relates to a computer-implemented
method, system and computer program product for display-
ing a graphical user interface component according to an
implementation language independent description of the user
interface component. The application also relates to generat-
ing a graphical user interface including a plurality of user
interface components.

BACKGROUND

Development of graphical user interfaces, particularly for
rich Internet applications, may require coordination between
a number of users and developers. Application developers
may need to create a number of prototypes, each prototype
requiring user feedback, before a graphical user interface
meeting all user requirements is developed. The process of
creating and modifying a graphical user interface in order to
create a production version of the graphical user interface can
be expensive and time intensive. Moreover, even when the
production version of the graphical user interface is created,
new widgets and features may need to be added. The addition
of'such widgets and features may also require multiple inter-
actions between users and developers, as well as the creation
of multiple prototype user interfaces (i.e. prototypes), before
an acceptable graphical user interface meeting all require-
ments is created.

Conventional approaches to graphical user interface devel-
opment may involve a developer receiving a written require-
ments specification from the user. Alternatively, developers
and users may meet physically or virtually in order to create
a list of requirements together. Once the requirements have
been established, a prototype or demonstration version of the
graphical user interface may be developed in order to obtain
user feedback. Multiple such versions may need to be devel-
oped, possibly due to communication difficulties between
users and developers. In addition, problems may arise (e.g.
the code of an existing user interface may need to be modi-
fied) due to rapid progression of technology and/or the addi-
tion of new features to a user interface language, or even the
creation of an entirely new language that can be used to
display a graphical user interface.

Another problem that may arise in the development of a
graphical user interface is the lack of standardization of user
interface components across one or more graphical user inter-
faces. The lack of standardization may arise due to a failure to
follow user interface (UI) presentation guidelines (i.e.
instructions specifying how Ul components should look
when they are displayed) uniformly, incorrect translation of
user requirements into implementation language code, or
poor communication between user interface developers.
Also, user interface requirements may evolve as users view
prototypes of the graphical user interface and become more
familiar with the possibilities available for displaying various
user interface components. Developing the new user interface
prototypes may be particularly time consuming if user

10

20

40

45

55

2

requirements are manually translated into user interface com-
ponents written in implementation language code. Manual
translation of user requirements into implementation lan-
guage code may also lead to a lack of standardization and a
loss of usability due to the use of presentation attributes
selected based on user requirements rather than standard pre-
sentation attributes. Prevention and detection of errors result-
ing from manual translation of user requirements into imple-
mentation language code may be effort and cost intensive.

Accordingly, there may be a need for a tool to automate or
improve automation of the translation of requirements
describing a graphical user interface into a graphical user
interface that can be displayed. Moreover, it may be a prob-
lem to enable users to easily and intuitively describe user
interface components without needing to be concerned about
implementation language dependent properties or attributes
of'the user interface components. It may also be a problem to
quickly generate a prototype of a user interface based on user
requirements or an implementation language independent
description of the user interface, thereby reducing errors in
the translation of requirements into code and enabling new
features and refinements to be gathered quickly and accu-
rately. Improved automation of the translation of user require-
ments into implementation language dependent code may
reduce the effort required to generate a user interface or
components of the user interface. Moreover, standardization
of'the user interface may be improved through the identifica-
tion and application of the appropriate presentation rules. In
particular, it may be possible to more effectively match user
requirements to implementation dependent features. Accord-
ingly, user requirements can be quickly prototyped and dem-
onstrated and the correspondence between user requirements
and implementation dependent features is automatically
documented, e.g. by means of a map or dictionary.

The creation of a user interface and components thereof
according to an implementation language independent
description of the user interface may enable users to describe
the graphical user interface in a simplified way. This may
increase the involvement of users in the development of the
graphical user interface, thereby reducing the time required
for development, particularly by decreasing the number of
prototypes required. In some cases, a user would be able to
create the graphical user interface on his own without needing
to understand the underlying implementation and without
requiring the assistance of a developer.

The subject matter described in the present specification
can be implemented as a method or as a system, possibly in
the form of one or more computer program products. The
subject matter described in the specification can be imple-
mented in a data signal or on a machine readable medium,
where the medium is embodied in one or more information
carriers, such as a CD-ROM, a DVD-ROM, a semiconductor
memory, or a hard disk. Such computer program products
may cause a data processing apparatus to perform one or more
operations described in the specification.

In addition, subject matter described in the present speci-
fication can also be implemented as a system including a
processor and a memory coupled to the processor. The
memory may encode one or more programs and cause the
processor to perform one or more of the methods described in
the specification. Further subject matter described in the
specification can be implemented using various machines.

Details of one or more implementations are set forth in the
exemplary drawings and description below. Others features
will become apparent from the description, the drawings, and
from the claims.

US 9,268,539 B2

3
SUMMARY

According to some embodiments of the claimed subject
matter, technical terms used in the present specification may
be understood according to the following technical defini-
tions.

A graphical user interface (also referred to as a user inter-
face, GUI or Ul) may include one or more user interface
components.

A user interface component may be understood as an ele-
ment of a user interface that is can be displayed as part of the
user interface. In particular, a user may be able to interact with
the user interface component and the user interface compo-
nent may define the appearance of the user interface.
Examples of user interface components are as follows: a
button, a window, a pointer, a menu bar, a list box, a combo
box, a datagrid, or a video.

An implementation language independent description of
the graphical user interface includes implementation lan-
guage independent descriptions of one or more user interface
components.

An implementation language independent description of a
user interface component includes an implementation lan-
guage independent type. The implementation language inde-
pendent description may include one or more presentation
rules and/or one or more presentation attributes. Alterna-
tively, the one or more presentation rules and/or presentation
attributes may be identified using a type definition, where the
type definition specifies presentation rules and/or presenta-
tion attributes corresponding to the implementation language
independent type.

The implementation language independent type can be
associated with one or more implementation language depen-
dent types, where each implementation language dependent
type has an associated implementation language. The imple-
mentation language independent type describes (or labels)
the corresponding user interface component. Examples of
implementation language independent types are as follows: a
button, a window, a pointer, a menu bar, a list box, a combo
box, a datagrid, or a video.

The implementation language dependent type may be
understood a classification of the user interface component
that may identify potential attributes of the user interface
component (e.g. characteristics of a shape such as the circum-
ference of a circle). The implementation language dependent
type may also determine presentation rules and presentation
attributes that can be applied to a user interface component.
The implementation language dependent type may be similar
to the implementation language independent type, however, a
difference between the two may be that the implementation
language dependent type includes characteristics of a particu-
lar implementation language. For example, implementation
language dependent types in the Flex programming language
may include the “mx” prefix.

The implementation language independent description
may require translation or other processing according to a set
of instructions in order to produce an implementation lan-
guage dependent specification that can be displayed. The
implementation language independent description may be
more declarative, i.e. more focused on what user interface
component to display rather than how to display the compo-
nent, than the implementation language dependent specifica-
tion. In other words, the implementation language dependent
specification may be more imperative, i.e. more focused on
how to display the user interface component, than the imple-
mentation language independent description.

10

15

20

25

30

35

40

45

50

55

60

65

4

Parsing, e.g. by a description parser, may involve checking
the syntax of an input and building a data structure from the
input. Parsing may further include the identification of tokens
or elements of the input.

A binary file is a computer file which contains data encoded
in binary form. The binary file may contain bytes that are
intended to be interpreted as something other than text char-
acters or ASCII characters.

A rich Internet application is a web application that has
characteristics of a desktop application. A rich Internet appli-
cationmay be executed by a browser via a browser plug-in, an
independent sandbox, or a virtual machine. A software frame-
work may need to be installed before executing the rich Inter-
net application. The software framework may download,
update, verify, and execute the rich Internet application. Dis-
playing the user interface component or the user interface by
means of the implementation language dependent specifica-
tion may involve executing the implementation language
dependent specification within a rich Internet application
framework, e.g. Adobe Flex (Adobe is a trademark of Adobe
Corporation). The implementation language dependent
specification may be compiled into a binary file before it is
executed and displayed.

Examples of implementation languages are MXML (an
extension of XML maintained by Adobe), extensible appli-
cation mark-up language (XAML), scalable vector graphics
(SVQG), user interface mark up language (UIML), XML user
interface language (XUL), Coral, Java FX (Java is a trade-
mark of Oracle Corporation). Combinations of one or more of
these languages may also be used. The implementation lan-
guage may include presentation functionality, e.g. function-
ality required to place user interface component in a chosen
location on a page.

A presentation rule may determine one or more presenta-
tion attributes of a user interface component. Thus, the pre-
sentation rule may determine the look and formatting of the
user interface component. The presentation rule may corre-
spond to one or more user interface components. In one
example, the presentation rule may be implemented as a style
rule and may be part of a cascading style sheet.

A presentation attribute of a user interface component may
affect the look and/or formatting of the user interface com-
ponent. Examples of presentational attributes are positions,
fonts, colors, background styles, element alignments, bor-
ders, and sizes.

A pre-written wrapper may be used to dynamically create
and display user interface components. The wrapper may be
written in the same implementation language as the imple-
mentation language dependent specification of the user inter-
face components. The wrapper may be used to generate the
entire user interface including all the user interface compo-
nents specified in the implementation language independent
description of the user interface.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of an exemplary method for display-
ing a user interface according to an implementation language
independent description of the user interface.

FIG. 2 is another flow chart showing steps and modules
used to display a user interface according to an implementa-
tion language independent description of the user interface.

FIG. 3 shows a display of a user interface including a
button and a Combobox displayed according to the imple-
mentation language independent description of the user inter-
face.

US 9,268,539 B2

5

FIG. 4 is flow chart of an exemplary method for verifying
presentation semantics of an implementation language
dependent specification of the user interface.

FIG. 5 shows a screen shot of an integrated development
environment including a software component that can be used
to verify presentation semantics of the implementation lan-
guage dependent specification of the user interface.

FIG. 6 shows another screen shot of the integrated devel-
opment environment including the software component.

FIG. 7 shows yet another screen shot of the integrated
development environment including the software compo-
nent.

FIG. 8 shows a further screen shot of the integrated devel-
opment environment including the software component.

FIG. 9 shows an exemplary system for implementing the
claimed subject matter including a general purpose comput-
ing device in the form of a conventional computing environ-
ment.

DETAILED DESCRIPTION

In the following text, a detailed description of examples
will be given with reference to the drawings. It should be
understood that various modifications to the examples may be
made. In particular, elements of one example may be com-
bined and used in other examples to form new examples. The
following specification includes some exemplary XML code.
Whitespace may have been added to the XML code in order
to improve readability.

FIG. 1 depicts a flow chart of a method for displaying a user
interface according to an implementation language indepen-
dent description of the user interface. The flow chart may also
correspond to a system and a computer program product. The
computer program product may be referred to as a tool.

At step S101, user input may be received specifying a
location of an implementation language independent descrip-
tion of a user interface. The user interface may comprise one
or more user interface components. The implementation lan-
guage independent description is used to create an implemen-
tation language dependent specification of the user interface.
The location of a compiler for the implementation language
dependent specification may also be specified at step S101. In
a specific example, the Flex software development kit (SDK)
may be used to compile the implementation language depen-
dent specification into a binary file. The location of a set of
presentation rules (referred to in FIG. 7) may also be specified
at step S101. The set of presentation rules may be in the form
of a cascading style sheets (CSS) style sheet.

At step S103 the inputs provided in step S101 may be
verified. If there is an error in the user input, e.g. the user fails
to specify a location of the implementation language inde-
pendent description or fails to specify a location from which
the implementation language independent description can be
retrieved. The location of the implementation language inde-
pendent description of the user interface component may be
determined at step S107. Furthermore, the location may be
referred to as a data store. The determination of the location
may be carried out by a rules engine 150. Also, the rules
engine 150 may be a production rule system for processing
decision logic. An example of a system that can be used to
implement the rules engine 150 is Drools (a business rule
management system maintained by RedHat).

The rules engine 150 may be used to identify a source, e.g.
a database, based on user input. Once the source of user input
has been identified, the rules engine 150 may send an identi-
fier to be processed by means of dependency injection (ex-
plained further below) in order to execute appropriate parser.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The parser may then create one or more value objects corre-
sponding to user interface components. In some cases, each
value object may be implemented as a single row of data.

At step S109 of a description parser for the implementation
language independent description may be selected from pars-
ers 156. The description parser may be selected based on a
characteristic of the implementation language independent
description. Examples of the characteristic are the file format
or the means of receiving the implementation language inde-
pendent description. Possible file formats of the implemen-
tation language independent description include Microsoft
Excel (Microsoft and Excel are trademarks of Microsoft Cor-
poration) formats such as the binary interchange file format
(BIFF), Office Open XML and XML spreadsheet. The file
format could also be comma separated value (CSV) or some
other format where elements of a text file or separated by the
delimiters. The means of receiving the implementation lan-
guage independent description may be a database manage-
ment system, e.g. a relational database management system.
Exemplary description parsers are a CSV parser, an XL.S
parser and a DB parser.

The rules engine 150 referred to in steps S107 and S109
may be invoked via dependency injection. For example, the
rules engine 150 may be invoked by means of an inversion of
control container 152. The inversion of control container 152
may be implemented by means of the Spring Framework
(maintained by SpringSource).

The inversion of control container may be configured for
the rules engine 150 as follows:

TABLE 1

<bean name="com.acn.rule. DataStoreParser”
class="“com.acn.rule.RulesWrapper”
singleton="true”>
<constructor-arg type="java.lang.String”
value="“com/acn/properties/DataStoreParser.drl”/>
</bean>

An invocation of the rules engine 150 may include the
following code:

TABLE 2
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.-

newKnowledgeBuilder(); kbuilder.add(ResourceFactory.-
newClassPathResource(ruleFile),Resource Type. DRL);

Inthe example of Table 2, “KnowledgeBuilder” is a Drools
API and “ruleFile” corresponds to a value in the Spring con-
figuration file.

In some cases, dependency injection, possibly achieved by
means of an inversion of control container, may be used for an
object constructor and for passing the required parameters
needed to instantiate objects. The rules engine 150 and rules
configuration files 154 may be declared as dependencies.
Instantiation and configuration of the rules engine 150 may be
handled by the inversion of control container 152. The inver-
sion of control container 152 may also be referred to as an
external container. Use of the inversion of control container
152 may make it easier to manage changes to the location of
the rules engine 150 and rules configuration files 154. Use of
the rules engine 150 and the inversion of control container
152 may make the tool easier to update and modify, and more
portable. In other words, the inversion of control container
152 may enable a decoupling of the execution of a software
module (e.g. the rules engine 150) from its implementation.
Accordingly, implementation of the display of user interface

US 9,268,539 B2

7

components and user interfaces can separated from the use of
software modules invoked via the inversion of control con-
tainer 152 (e.g the rules engine 150), and software modules
such as the rules engine 150 can be easily replaced without
having a side effect on other parts of the tool.

At step S111, the description parser selected from the
parsers 156 at step S109 may read the implementation lan-
guage independent description from the location identified at
step S107. In other words, the implementation language inde-
pendent description is received by the description parser. Step
S111 may include creating a parsed description (also referred
to as an internal representation) of the implementation lan-
guage independent description in a memory. In some imple-
mentations, the parsed description may take the form of one
ormore value objects. Each value object may be implemented
as an array of objects that automatically expands so that new
objects may be easily included. For example, in a Java imple-
mentation, the value object may be implemented as a Java.u-
til.arrayList with some further enhancements. In particular,
unlike a standard Java.util.arrayList, the value object may
group information (e.g. features) for each Ul component
together, so that each Ul component and its corresponding
features can be distinguished from other Ul components in
the value object. If the parsed description is implemented in a
von Neumann language such as C or Ada (as opposed to an
object-oriented language), the parsed description could be
implemented using other data structures (rather than objects),
such as linked lists.

According to a specific example, each value object
includes information about a specific user interface compo-
nent, e.g. the language dependent type of the component,
presentation rules, and presentation attributes. The value
objects may be transferred to the parsers 156 by means of at
least one data transfer object, also referred to as FlexUIDTO.
The data transfer object can be used to carry or transfer
information between different software modules, e.g. to
transfer value objects to the parsers 156. The data transfer
object may be understood as a composite object, i.e. a collec-
tion of value objects. The data transfer object may include all
the data needed to generate the user interface component
based on the implementation language. The data transfer
object may be implemented as a Java object.

Once the parsed description has been created, a set of
instructions may be selected for processing the parsed
description. The set of instructions for processing the parsed
description may be implemented as a template for use with a
template processor 158. Alternatively, the set of instructions
may be implemented as part of a larger computer program not
associated with the template processor 158.

At step S113, the parsed description may be processed
according to the set of instructions. The processing may result
in the creation of an implementation language dependent
specification of the user interface component. Processing
may be carried out by the template processor 158, also
referred to as a template engine or a template parser. The
template processor 158 may be understood as software that
combines one or more templates with content in order to
produce a result document. The template processor 158 may
also be understood as a programming language whose pri-
mary purpose is to process data and corresponding templates
in order to output text, e.g. program code. According to a
specific example, the template processor 158 may be imple-
mented using Velocity (maintained by Apache).

Step S113 may involve including an association of the
implementation language dependent type of the user interface
component with a presentation rule determining the look
and/or format of a user interface component in the implemen-

30

40

45

55

8

tation language dependent specification. In a specific
example, the association may be a structural marker that
includes both the implementation language dependent type
and the presentation rule.

Use of the set of instructions (possibly implemented as a
template and processed using the template processor 158)
may be advantageous since multiple implementation lan-
guage dependent specifications in different implementation
languages can easily be generated from a single implemen-
tation language independent description by means of differ-
ent sets of instructions. In some cases, the template processor
158 may be invoked using the inversion of control container
152. For example, the inversion of control container may be
configured for the template processor 158 as follows:

TABLE 3

<bean id="VelocityEngine” class=
“org.springframework.ui.velocity. VelocityEngineFactoryBean™>
<property name="velocityProperties”>
<props>
<prop key="resource.loader”>class</prop>
<prop key="class.resource.loader.class™>
org.apache.velocity.runtime.resource.loader.-
ClasspathResourceLoader
</prop>
</props>
</property>
</bean>

A number of implementation languages could be used such
a MXML, XAML, SVG, UIML, XUL, Curl, or Java FX.
Similar to the rules engine 150, use of the inversion of control
container 152 in order to select the set of instructions (possi-
bly implemented using the template processor 158 and the
template) may be advantageous in that the set of instructions
may be more easily modified and ported to different operating
environments.

At step S115, the implementation language dependent
specification may be compiled into a binary file. For example,
if the implementation language is MXML, the format of the
binary file may be SWF (also referred to as small web format
or shockwave format). Compiling the implementation lan-
guage dependent specification may involve the performance
of compilation of operations, e.g. lexical and syntactical
analysis and binary code generation, on the implementation
language dependent specification. The binary file may be
displayed by means of a web browser, possibly via a software
framework of a browser plug-in. In a specific example, the
binary file is an SWF file that can be displayed using Adobe
Flash. According to the example, the binary file can be created
using an Adobe Flash builder integrated development envi-
ronment (IDE), a Flex software development kit (SDK) or a
Flex server.

At step S117, a determination is made as to whether the
implementation language dependent specification was suc-
cessfully compiled. If the compilation was unsuccessful, one
or more error messages may be displayed to the user at step
S119. Even if the compilation was successtul, one or more
warning messages may be displayed.

At step S121, a validation process may be carried out in
order to determine whether the user interface and the compo-
nents thereof, as specified by the implementation language
independent description, were generated according to the
intent of the user. According to a specific example, the com-
piled SWF file may be displayed in a web browser window.

FIG. 2 also shows a method for displaying a user interface
according to an implementation language independent
description of the user interface. The steps depicted in the

US 9,268,539 B2

9

flow chart of FIG. 2 may be divided into four sections: data
store processing comprising step S201, rules processing com-
prising steps S203 to S207, core processing comprising steps
S209 to S217, and validation and presentation comprising
steps S219 to S223. Step S201 visually depicts the implemen-
tation language independent description of the user interface.
The implementation language independent description may
be received by accessing a CSV file, a Microsoft XLS file, or
a conventional database, e.g. a relational database. Table 4
shows an example of an implementation language indepen-
dent description implemented in CSV format:

TABLE 4

Horizontalbox,
width,100%

height,100%

ComboBox,
style,assetComboBoxDropDown
prompt,Im a Combo Box!
x,100

y,100

space,

width,100

height,50

Button,

style,assetButton
label,Im a Button!

x,200

y,200

The example of Table 4 includes three implementation
language independent types: “Horizontalbox”, “Com-
boBox”, and “Button”. Also, the example of Table 4 includes
two presentation rules: “assetComboBoxDropDown” and
“assetButton”. In addition, the example of Table 4 includes
four presentation attributes “width”, “height”, “x”, and “y”.

At step S203, the rules engine 150 may be invoked, e.g. via
the inversion of control container 152, in order to identify the
data store and select the description parser from the parsers
156 based on a characteristic of the implementation language
independent description. The rules engine 150 may be imple-
mented as a system that executes one or more rules in a run
time environment and which can be used for making deci-
sions. The rules engine 150 may select the description parser
from the parsers 156 based on user input. The rules engine
150 may operate according to a rules file 154. Table 5 shows
a sample rules file that can be used to control the operation of
the rules engine 150:

TABLE 5
rule “file”
when m : ParserDRLMessage(ruleToExecute == “file”)
then

DataStore ds = m.getDataStore();
String fileName = ds.getSource();
String extention = fileName.substring(fileName.-
lastIndexOf(*.”)+1,
fileName.length());
m.setRuleToExecute(extention.toLowerCase());
update(m);
end
rule “csv”
when m : ParserDRLMessage(ruleToExecute == “csv”
then
m.setParserName(“CSVParser”);
end

Thus, according to the example of Table 5, both the “file”
rule and the “cvs” rule are used to parse a csv file. In particu-
lar, a filename with a csv extension may be provided by the
user, the extension of the file may be extracted using the “file”

10

15

20

25

30

35

40

45

50

55

60

65

10

rule and the “csv” rule is then activated in order to select a
CSVParser. Alternatively, if a filename with a different exten-
sion is provided (e.g. “xls”), the extension may be extracted
using the “file” rule and then an “x1s” rule (not shown) may be
used to select an XL.SParser.

At step S205, the description parser, possibly implemented
using the CSV parser, may be loaded using the inversion of
control container 152, depending on the selection made in
step S203. At step S207, the process controlling the rules
engine 150, as well as the selection of the description parser
and the identification of the data store, may be terminated
since the input provided by the user is not complete. In other
words, step S207 may be carried out to provide the user with
usage information regarding the tool, since step S207 is
reached when the user input is invalid or incomplete.

At step S209, an implementation language for displaying
the user interface component may be determined. The imple-
mentation language may be determined in a number of ways,
e.g. based on user input or based on the technology most
suitable for displaying the user interface. The description
parser, also referred to as a data store parser, may be used to
identify an implementation language independent type. The
implementation language independent type may be identified
by checking a map entry. Two exemplary map entries are
shown below:

TABLE 6

Button,mx:controls. Button
ComboBox,mx:controls.ComboBox

In particular, parsing the implementation language inde-
pendent description may comprise identifying an implemen-
tation language independent type, and optionally, identifying
a presentation rule. Moreover, the implementation language
independent description of the user interface may include one
or more user interface components. Thus, parsing the imple-
mentation language independent description may involve
identifying an implementation language independent type for
each user interface component.

However, the description parser may be selected from the
parsers 156 in order to parse the implementation language
independent description of all user interface components in
the user interface. In addition, a single implementation lan-
guage may be selected for displaying all user interface com-
ponents in the user interface.

At step S211, as mentioned above with respect to FIG. 1,
the parsed implementation language independent description
may be represented as one or more value objects. Other inter-
nal representations, which may or may not be object-oriented,
could also be used. Table 7 shows an example of an imple-
mentation language independent description that has been
modified in order to create the parsed description:

TABLE 7

mx.controls.ComboBox
prompt,Im a Combo Box!
color isStyle=“true” ,0xff0000
height,101

width,100

mx.controls.Button

label,Im a Button!

color isStyle="true” ,0xffOOff
height,103

width,102

The modified description of Table 7 includes two imple-
mentation language dependent types, i.e. mx.controls.Com-

US 9,268,539 B2

11

bobox and mx.controls.Button. The two implementation lan-
guage dependent types are dependent on the implementation
language MXML. Modifying the implementation language
independent description in order to create an implementation
language dependent description, as shown in Table 7, may
have the advantage of facilitating the creation of further
implementation language dependent specifications (i.e.
dependent on different languages) based on the same imple-
mentation language independent description. In particular,
parsing the implementation language independent descrip-
tion may comprise determining one or more implementation
language dependent types and then using those dependent
types to create value objects.

Atstep S213, a set of instructions is selected for processing
the parsed description. The set of instructions may be imple-
mented as a template. In some implementations, the template
processor 158 may be used for processing the set of instruc-
tions. In the specific example when the template processor

10

15

158 is Velocity, the template may be implemented as follows: 2

TABLE 8

#macro(createXML)
#set ($compMap = $data.getComponentNames())
#set ($comp = $compMap.keySet())
#foreach($key in $compMap.keySet())
#if ($key 1= “layout™)
#if ($key.indexOf(*) > 0)
<component type="“$key.substring(0,$key.indexOf(*))”
style="$key.substring($key.indexOf(**), $key.length()).trim()*>
#else
<component type="$key”>
#end
#foreach($propertyKey in $compMap.get($key).keySet())
#if ($propertyKey.indexOf(*) > 0)
<$propertyKey>$compMap.get($key).get($propertyKey)
</$propertyKey.substring(0,$propertyKey.index Of(“))>
#else
<$propertyKey>$compMap.get($key).get($propertyKey)
</$propertyKey>
#end
#end
</component™>
#end
#end
#end
<?xml version="1.0" encoding="UTF-8"?>
<components type="array”’>
#ereateXML()
</components™>

The exemplary template above can be used to generate user
interface components supported by Adobe Flex, particularly
with versions of the Flex SDK up to 3.5. The template is
constructed so that it can be easily modified to generate new
user interface components that are introduced in new versions
of the Flex SDK. A plurality of templates may be separately
created so as to have the flexibility of enhancing or modifying
one of the templates without affecting any of the others.
Moreover, it may be possible (and desirable) to process the
parsed description using multiple templates, possibly
arranged in a hierarchy. Due to the specific combination of
components used in the tool, patches or fixes can be release as
incremental updates without having to do a full regression
test.

At step S215, the template may be selected from a plurality
of predefined templates.

At step S217, processing of the parsed description accord-
ing to the set of instructions may result in the creation of an
implementation language dependent specification of the user
interface. The following is an example of the implementation
language dependent specification:

25

30

35

40

45

50

55

60

65

12
TABLE 9

<?xml version="1.0" encoding="UTF-8” 7>
- <components type="array”>
- <component type="mx.containers. HBox”>
<height>100%</height>
<width>100%</width>
</component™>
- <component type="mx.controls.Button” style="assetButton”>
<x>200</x>
<label>Im a Button!</label>
<y>200</y>
</component™>
- <component type="mx.controls.ComboBox”
style="assetComboBoxDropDown”>
<x>100</x>
<prompt>Im a Combo Box!</prompt>
<y>100</y>
</component™>
- <component type="mx.controls. Spacer”>
<height>50</height>
<width>100</width>
</component™>
</components™>

The implementation language dependent specification
above includes the following implementation language
dependent types: mx.containers.HBox, mx.controls.Button,
mx.controls.ComboBox, and mx.controls.Spacer. The exem-
plary implementation language dependent specification
includes the following presentation rules: assetButton and
assetComboBoxDropDown.

The presentation rules may be specified as styles, e.g. as
follows:

TABLE 10

.assetComboBoxDropDown{

fontFamily: Arial, Regular;
fontSize: 10;
fontWeight: normal;

color: #000000;

paddingLeft: 2;

.assetButton {

fontFamily: Arial;
fontSize: 11;
fontWeight: normal;
height: 19px;
color: #000;
themeColor: #3274a9;
disabledColor: #717171;
textRollOverColor: ~ #000000;
textSelectedColor: ~ #000000;
borderColor: #B6ADAY;
paddinglLeft: 3px;
paddingRight: 3px;
padding-bottom: 3px;
padding-top: 3px;
cornerRadius: 3;
highlightAlphas: 1,05
fillAlphas: 1,.5,1,0;
fillColors: #c3d4db, #c5d4db, #c5d4db,
#c5d4db;

The styles of Table 10 can be used as presentation rules to
process the parsed description. Alternatively, a user specified
presentation rule, which corresponds to the implementation
language dependent type determined by the tool, can be pro-
vided by the user with the implementation language indepen-
dent description. Provision of the user specified presentation
rule with the implementation language independent descrip-
tion may provide increased flexibility. However, the use (or
allowance) of user specified presentation rules may hinder
standardization.

US 9,268,539 B2

13

A compiler may be identified in step S219. For example,
the compiler may be Flex SDK or maven2 with sonatype
APIs. Alternatively, the implementation language dependent
specification may be directly displayed. It is possible that use
of'a compiler results in a display that is easier to use and has
an improved appearance in comparison to the direct display
of the implementation language dependent specification.

In step S221, the compiler may be used to generate a binary
file. According to a specific example, the binary file may be in
SWF format. In step S223, the compiled binary file may be
displayed. The display of the binary file may be achieved
using a web browser and an appropriate plug-in, e.g. Adobe
Flash. Display of the binary file may give the user an oppor-
tunity to see how the user interface will look after it has been
generated. The user may then validate that the user interface
has been generated according to the user’s requirements.

FIG. 3 depicts a user interface including two user interface
components 301 and 303. In particular, FIG. 3 includes a
button 301 and a combobox 303. The user interface of FIG. 3
may be displayed by incorporating the implementation lan-
guage dependent specification of the user interface into a
wrapper. The wrapper may be written in the same implemen-
tation language as the implementation language dependent
specification of the user interface. According to a specific
example, if the implementation language dependent specifi-
cation is in MXML, then the wrapper may be coded as fol-
lows:

TABLE 11

<?xml version="1.0" encoding="utf-8” 7>
- <mx:Application
xmlns.mx="http://www.adobe.com/2006/mxml”
creationComplete="“creationCompleteHandler()>
<mx:Style source="D:\tmp\patent\test.css” />
- <mx:Script>
- <{[CDATA[
import mx.containers.Box;
import flash.display.DisplayObject;
import mx.core.UlComponent;
import mx.controls.ComboBox; ComboBox;
import mx.controls.Spacer; Spacer;
import mx.containers.HBox; HBox;
import mx.containers.VBox; VBox;
protected function creationCompleteHandler():void
{
var components:Array = getComponents FromXML(xml.-
component);
var i:int = 0;
var n:int = components.length;
var bLayoutFlag:Boolean = false;
var arrLayoutComponents:Array = [];
var nLayoutCnt:int = 0;
var objBox:Box;
var output:Object;
for (i; i <m; i++) {
if (components[i].toString() == “HBox24" ||
components[i].toString() == “VBox24”) {
arrLayoutComponents.push(components[i] as
DisplayObject);
nLayoutCnt = nLayoutCnt + 1;
bLayoutFlag = true;
objBox = components|[i];
} else if (bLayoutFlag == true) {
objBox.addChild(components[i] as DisplayObject);

¥
if (bLayoutFlag) {

canvas.addChild(components[i] as DisplayObject);
¥

if (arrLayoutComponents != null) {
for (var nCnt:int = 0; nCnt < arrLayoutComponents.length;
nCnt++)

canvas.addChild(arrLayoutComponents[nCnt]);

10

15

20

25

30

35

40

45

50

55

65

14
TABLE 11-continued

¥

¥
/**
* Parses an XML string, returns array of new components.
*/
public function
getComponentsFromXML(components: XMLList): Array
{

var result:Array = [];

var child:Object;

var component:UIComponent;

var type:String;

var style: String;

var clazz:Class;

var i:int = 0;

var n:int = components.length();

for (i; 1 <n; i++)

child = components[i];

type = child.@type;

style = child.@style;

try {
clazz = flash.utils.getDefinitionByName(type) as Class;

} catch (error:ReferenceError) {
traceImportError(type);

¥

component = new clazz(); // dynamic

component.styleName = style;

var properties:XMLList = child.elements();

var property:XML;

var name:String;

var value:Object;

// for each child node

for each (property in properties)

name = property.localName();
value = property.toString();
if (Ad+/.test(value.toString()))
value = Number(value);
if (property.attribute(“isStyle”) == “true™)
component.setStyle(name, value);
else
component[name] = value;

result.push(component);
return result;

protected function tracelmportError(type:String):void
{
trace(“Please include the class
var names:Array = type.split(“”);
var last:String = names[names.length — 1];

2,93

trace(“import “ + type + ; “ + last + 7;”);

oo

+type + *” in the swf.”);

1>
</mx:Script>
- <!-- sample data -->
<mx:XML id=“xml!” source=“components.xml” />
- <!-- sample container -->
- <mx:Panel id="“panel” width=100%" height=*100%">
- <mx:Canvas id="canvas” width=100%" height=*100%">
<mx:HBox id=“layoutHorizontal” />
<mx:VBox id=“layoutVertical” />
<mx:Label />
</mx:Canvas>
</mx:Panel>
</mx:Application>

The wrapper of Table 11 includes the following line: ‘<mx:
XML id="xml” source="components.xml’/>". This line may
beused to import or incorporate the implementation language
dependent specification of Table 9 into the wrapper. The
wrapper may then be compiled into a binary file, e.g. an SWF
file. Alternatively, the entire user interface may be generated
by the template processor 158, possibly in combination with
other code.

US 9,268,539 B2

15

FIG. 4 depicts a method of verifying presentation seman-
tics of the implementation language dependent specification
of'the user interface. This may be useful in a number of cases.
For example, there may be a requirement to change the look
and formatting of the user interface over time. This may be
achieved by creating new presentation rules and attributes or
modifying existing presentation rules and attributes. Presen-
tation rules may be implemented in cascading style sheets or
individual styles. In order to develop the user interface with a
look and format meeting user requirements, multiple stages
or iterations may be required. In particular, a new or modified
user interface created according to new or modified presen-
tation rules maybe displayed for the user to review. Based on
the review, new requirements may be developed or existing
requirements may be modified or further specified. Multiple
reviews may be required before a final or production user
interface is created.

It is also possible that style guides were not properly
applied or coating standards were not adhered to during the
development of the user interface. This may lead to additional
stages of review before the final user interface is developed.
Moreover, reviewing user interface code to check if the code
adheres to specify presentation rules and attributes may be a
difficult and error prone task. Existing tools may not be suit-
able for verifying that an implementation language dependent
specification of a user interface adheres to a defined set of
presentation semantics. Presentation semantics may be
understood to include presentation rules and/or presentation
attributes.

Verification of presentation semantics may be achieved
using the following two components: first, the set of presen-
tationrules, assembled based on user requirements. The set of
presentation rules may be used as a standard for all user
interface developments. The second component may be
implemented as a plug-in that is configured in an integrated
development environment (IDE), e.g. Eclipse or Adobe Flex
builder. In order to perform verification of presentation
semantics, the user may click on a menu option to evaluate an
implementation language dependent specification against the
set of presentation rules. If any violations are found, a list may
be shown. According to a specific example, the implementa-
tion language is MXML and the set of presentation rules is a
CSS style sheet.

FIG. 4 may be divided into three sections: first, data input
including step S401; second, IDE processing including steps
S403 to S413; and third, console output including steps S415
and S417.

At step S401, the implementation language dependent
specification and a set of one or more presentation rules are
provided as input. The set of presentation rules may include
one or more definitions of presentation rules referred to in the
implementation language dependent specification. For
example, the implementation language dependent specifica-
tion may include a style name and the set of presentation rules
may include a style definition corresponding to the style
name. At step S403, the implementation language dependent
specification may be parsed in order to select at least one
presentation rule.

At step S405, the set of presentation rules may be loaded.
The definitions in the set of presentation rules may include
one or more presentation attributes corresponding to the pre-
sentation rule selected at step S403.

At step S407, a style validation engine, or similar software
component, may be activated. The style validation engine
may use the parsed implementation language dependent
specification and the set of presentation rules to verify the
presentation semantics of the implementation language

10

15

20

25

30

35

40

45

50

55

60

65

16

dependent specification. The style validation engine may be a
plug-in that interfaces with the IDE using plug-in APIs of the
IDE.

At step S409, a determination may be made for each user
interface component in the implementation language depen-
dent specification. If a particular presentation rule should be
associated with the user interface component and is not asso-
ciated with the user interface component, the particular pre-
sentation rule may be added to a missing style list (list of
missing rules) at step S411. If an incorrect presentation rule is
associated with the user interface component, the incorrect
presentation rule may be added to an invalid style list (list of
invalid styles) at step S413.

At step S415 the missing style list generated in S411 may
be output in the integrated development environment. At step
S417, the invalid style list generated in step S417 may be
output in the IDE.

Accordingly, the steps described with respect to FIG. 4
may provide a developer with an easy and efficient way of
checking the implementation language dependent specifica-
tion against the set of presentation rules. Thus, the method of
verifying presentation semantics described with respect to
FIG. 4 may provide a single-click process to check the imple-
mentation language dependent specification against the set of
presentation rules and provide a list of style guideline viola-
tions (e.g. no style associated with a user interface component
or an incorrect style associated with the user interface com-
ponent), which can be quickly and efficiently corrected. The
list of style guideline violations may include the missing style
list and/or the invalid style list.

FIG. 5 shows a screen shot of the Eclipse IDE. The screen
shot shows a Flex style checker menu 501. The Flex style
checker menu 501 can be used to cause a computer system to
carry out the steps of FIG. 4.

FIG. 6 shows a check MXML menu option 601 of the Flex
style checker menu 501 that can be used to carry out the steps
described with respect to FIG. 4. Although Flex and MXML
are referred to in this specific example, other forms of exten-
sible markup language (XML) or other markup languages
compatible with CSS style sheets could also be used.

FIG. 7 depicts the selection of the set of presentation rules
701. The set of presentation rules 701 may be used, e.g. by a
presentation verifier, to verify presentation semantics of an
implementation language dependent specification 703.

FIG. 8 depicts output that may be produced after verifying
presentation semantics of an implementation language
dependent specification. A set of missing style names 801
may be produced after carrying out step S415 referred to in
FIG. 4. A setofinvalid style names 803 may be produced after
carrying out step S417 referred to in FIG. 4.

FIG. 9 shows an exemplary system for implementing the
claimed subject matter including a general purpose comput-
ing device in the form of a conventional computing environ-
ment 920 (e.g. a personal computer). The conventional com-
puting environment includes a processing unit 922, a system
memory 924, and a system bus 926. The system bus 9926
couples various system components including the system
memory 924 to the processing unit 922. The processing unit
922 may perform arithmetic, logic and/or control operations
by accessing the system memory 924. The system memory
924 may store information and/or instructions for use in com-
bination with the processing unit 922. The system memory
924 may include volatile and non-volatile memory, such as a
random access memory (RAM) 928 and a read-only memory
(ROM) 930. A basic input/output system (BIOS) containing
the basic routines that help to transfer information between
elements within the personal computer 920, such as during

US 9,268,539 B2

17
start-up, may be stored in the ROM 930. The system bus 926
may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures.

The personal computer 920 may further include a hard disk
drive 932 for reading from and writing to a hard disk (not
shown), and an external disk drive 934 for reading from or
writing to a removable disk 936. The removable disk may be
a magnetic disk for a magnetic disk driver or an optical disk
such as a CD-ROM for an optical disk drive. The hard disk
drive 932 and the external disk drive 934 are connected to the
system bus 926 by a hard disk drive interface 938 and an
external disk drive interface 940, respectively. The drives and
their associated computer-readable media provide non-vola-
tile storage of computer-readable instructions, data struc-
tures, program modules and other data for the personal com-
puter 920. The data structures may include relevant data for
the implementation of the method for displaying a user inter-
face component according to an implementation language
independent description of the user interface component. The
relevant data may be organized in a database, for example a
relational or object database (not shown).

Although the exemplary environment described herein
employs a hard disk (not shown) and an external disk 936, it
should be appreciated by those skilled in the art that other
types of compute-readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, random access memories,
read only memories, and the like, may also be used in the
exemplary operating environment.

A number of program modules may be stored on the hard
disk, external disk 936, ROM 930 or RAM 928, including an
operating system (not shown), one or more application pro-
grams 944, other program modules (not shown), and program
data946. The application programs may include at least a part
of the functionality as depicted in FIGS. 1 to 9.

A user may enter commands and information, as discussed
below, into the personal computer 920 through input devices
such as keyboard 948 and mouse 950. Other input devices
(not shown) may include a microphone (or other sensors),
joystick, game pad, scanner, or the like. These and other input
devices may be connected to the processing unit 922 through
a serial port interface 952 that is coupled to the system bus
926, or may be collected by other interfaces, such as a parallel
port interface 954, game port or a universal serial bus (USB).
Further, information may be printed using printer 956. The
printer 956, and other parallel input/output devices may be
connected to the processing unit 922 through parallel port
interface 954. A monitor 958 or other type of display device is
also connected to the system bus 926 via an interface, such as
a video input/output 960. In addition to the monitor 958,
computing environment 920 may include other peripheral
output devices (not shown), such as speakers or other audible
output.

The computing environment 920 may communicate with
other electronic devices such as a computer, telephone (wired
or wireless), personal digital assistant, television, or the like.
To communicate, the computer environment 920 may operate
in a networked environment using connections to one or more
electronic devices. FIG. 9 depicts the computer environment
networked with remote computer 962. The remote computer
962 may be another computing environment such as a server,
a router, a network PC, a peer device or other common net-
work node, and may include many or all of the elements
described above relative to the computing environment 920.
The logical connections depicted in FIG. 9 include a local
area network (LAN) 964 and a wide area network (WAN)

5

10

15

20

25

30

35

40

45

50

55

60

65

18

966. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets and the
Internet and may particularly be encrypted.

When used in a LAN networking environment, the com-
puting environment 920 may be connected to the LAN 964
through a network I/O 968. When used in a WAN networking
environment, the computing environment 920 may include a
modem 970 or other means for establishing communications
overthe WAN 966. The modem 970, which may be internal or
external to computing environment 920, is connected to the
system bus 926 via the serial port interface 952. In a net-
worked environment, program modules depicted relative to
the computing environment 920, or portions thereof, may be
stored in a remote memory storage device resident on or
accessible to remote computer 962. Furthermore, other data
relevant to method for displaying a user interface component
according to an implementation language independent
description of the user interface component (described
above), may be resident on or accessible via the remote com-
puter 962. It will be appreciated that the network connections
shown are exemplary and other means of establishing a com-
munications link between the electronic devices may be used.

The above-described computing system is only one
example of the type of computing system that may be used to
implement the method for displaying a user interface compo-
nent according to an implementation language independent
description of the user interface component.

According to an aspect, a computer implemented method
for displaying a user interface component according to an
implementation language independent description of the user
interface component is provided. The method may comprise
selecting, based on a characteristic of the implementation
language independent description, a description parser. The
method may further comprise receiving the implementation
language independent description. In addition, the method
may comprise determining an implementation language for
displaying the user interface component. The method may
also comprise parsing, by the description parser, the imple-
mentation language independent description by identifying
animplementation language independent type, and determin-
ing an implementation language dependent type of the user
interface component based on the implementation language
independent type and the implementation language. The
method may further comprise identifying a presentation rule
corresponding to the implementation language dependent
type. The method may also comprise selecting, according to
the implementation language, a set of instructions for pro-
cessing the parsed description. Furthermore, the method may
comprise processing the parsed description according to the
set of instructions in order to create an implementation lan-
guage dependent specification of the user interface compo-
nent, wherein the processing comprises including an associa-
tion of the implementation language dependent type with the
presentation rule in the implementation language dependent
specification. The method may also include displaying the
user interface component by means of the implementation
language dependent specification.

The step of receiving the implementation language inde-
pendent description may be performed before or after the step
of'selecting the description parser. The characteristics may be
a file format of the implementation language independent
description or a means of receiving the implementation lan-
guage independent description. Although a number of
examples in the present application refer to MXML as the
implementation language, other implementation languages

US 9,268,539 B2

19

suitable for displaying user interface components may be
used. The determination of the implementation language may
be made based on user input.

Parsing the implementation language independent descrip-
tion in order to identify an implementation language indepen-
dent type may also be described such that parsing the imple-
mentation language independent description comprises
identifying an implementation language independent type.

Identifying a presentation rule corresponding to the imple-
mentation language dependent type may be performed by
parsing the implementation language independent descrip-
tion. Alternatively, the identifying may be performed by
checking a map entry.

Displaying the user interface component may be carried
out by means of a web browser.

The method may further comprise compiling the informa-
tion language dependent specification into a binary file.

Compiling the implementation language dependent speci-
fication may comprise performing, by a compiler, compila-
tion operations on the implementation language dependent
specification. The binary file may in small web format. The
binary file may be displayable by a web browser.

The method may further comprise verifying presentation
semantics of the implementation language dependent speci-
fication of the user interface component by parsing the imple-
mentation language dependent specification in order to select
at least one presentation rule in the implementation language
dependent specification, and parsing a set of presentation
rules in order to determine if the selected presentation rule is
in the set of presentation rules. The method may further
comprise determining that the presentation rule is invalid if
the selected presentation rule is not in the set of presentation
rules, and determining that the presentation rule is valid if the
selected presentation rule is in the set of presentation rules.

The set of presentation rules may be implemented as a CSS
style sheet. The set of presentation rules may be external to
the specification or concatenated with the specification. Each
presentation rule may be implemented as a style.

A presentation verifier, also referred to as a style validation
engine, may be used in an integrated development environ-
ment. The presentation verifier may verify that each imple-
mentation language dependent type has an associated presen-
tation rule.

The characteristic may be a format of the implementation
language independent description or a means of receiving the
implementation language independent description. An
example of the means of receiving is receiving as a result of
accessing a database.

The characteristic may be one of the following: a delimiter
of the implementation language independent description, an
implementation language independent description is encoded
in a binary format, an implementation language independent
description includes markup language annotations, or the
implementation language independent description is received
by accessing a database management system. The delimiter
may be implemented as a comma or a semicolon or a tab. The
binary format may be Microsoft XIS, e.g. binary interchange
file format (BIFF), or another format that is not generated by
means of compilation operations. The markup language
annotations may be in XML.

Determining the implementation language dependent type
and/or identifying the presentation rule may comprise check-
ing a map entry, wherein the map entry may associate the
implementation language independent type and the imple-
mentation language dependent type, and wherein the map
entry may associate the documentation language independent
type, the implementation language dependent type, and the

15

30

40

45

55

60

20

presentation rule. A map may comprise multiple map entries.
The map entry may also be referred to as a mapping defini-
tion. The map may also be referred to as a dictionary. The map
may facilitate replacing existing features of a GUI with new
implementation language dependent features without the
need to modify existing implementation language indepen-
dent descriptions that use (or are dependent on) the existing
features.

The implementation language independent description
may include a user specified presentation attribute of the user
interface component, wherein parsing the implementation
language independent description further comprises identi-
fying the user specified presentation attribute, and wherein
processing the parsed description further comprises including
the user specified presentation attribute in the implementation
language dependent specification. The inclusion of the user
specified presentation attribute in the implementation lan-
guage independent description may result in enhanced flex-
ibility at the cost of standardization of the user interface.

Parsing the implementation language independent descrip-
tion may comprise inserting the implementation language
independent description into a data structure. The data struc-
ture may be object-oriented, e.g. the data structure may
include one or more value objects. The value objects may be
collected in a data transfer object. Alternatively, the data
structure may include a collection of elements that are not
assembled in an object-oriented way.

The implementation language for displaying the user inter-
face component may be one of the following: MXML,
XAML, SVG, UIML, XUL, Coral, or Java FX.

The method may further comprise declaring the descrip-
tion parser and a selector for the selecting the set of instruc-
tions as dependencies, and instantiating and configuring the
description parser and the selector by means of an inversion of
control container. The inversion of control container may also
be referred to as an external container.

Displaying the user interface component may include
incorporating the implementation language dependent speci-
fication into a wrapper. The wrapper may be written in the
same implementation language as the implementation lan-
guage dependent specification.

In some cases, the implementation language independent
description must be translated before being compiled into
binary code, and it may not be possible to display the imple-
mentation language independent description via a web
browser directly.

According to another aspect, a computer-implemented
method for generating a graphical user interface is provided.
The graphical user interface may include a plurality of user
interface components, each user interface component being
generated according to the method described above. Select-
ing the description parser and receiving the implementation
language independent description may be carried out only
once when generating the graphical user interface. In addi-
tion, the implementation language may be determined for
displaying the graphical user interface and each component
thereof. The entire implementation language independent
description of the graphical user interface might only be
parsed once, however, an implementation language indepen-
dent type may be identified for each user interface compo-
nent. Also, an implementation language dependent type and a
presentation rule may be determined for each user interface
component. The set of instructions for processing the parsed
description may be selected for the graphical user interface
and all components thereof. Thus, the parsed description may
describe all the user interface components of the user inter-

US 9,268,539 B2

21

face. The step of displaying may also be carried out by dis-
playing the graphical user interface including all components
thereof.

According to yet another aspect, a computer program prod-
uct is provided. The computer program product may com-
prise computer readable instructions, which, when loaded
and executed on a computer system, cause the computer
system to perform operations according to the method
described above.

According to a further aspect, a computer system for dis-
playing a user interface component according to an imple-
mentation language independent description of the user inter-
face component is provided. The system may comprise a
parser selection engine operable to select, based on a charac-
teristic of the implementation language independent descrip-
tion, a description parser. The description parser may be
operable to receive the implementation language independent
description, identify an implementation language indepen-
dent type and a presentation rule, and determine an imple-
mentation language dependent type of the user interface com-
ponent based on the implementation language independent
type and the implementation language. The system may fur-
ther comprise a processor operable to select, according to the
implementation language, a set of instructions for processing
the parse description, and to process the parsed description
according to the set of instructions in order to create an
implementation language dependent specification of the user
interface component. The processing may comprise includ-
ing an association of the implementation language dependent
type with the presentation rule in the implementation lan-
guage dependent specification. The system may further com-
prise a display operable to display the user interface compo-
nent by means of the implementation language dependent
specification.

Use of the implementation language independent descrip-
tion may be advantageous since it enables a user to describe a
user interface without having to know the complex details of
a particular technology, i.e. an implementation language.
Moreover, if the way of describing a type, a presentation rule,
or a presentation attribute in a particular implementation lan-
guage is changed, possibly due to an update of the implemen-
tation language, the same implementation language indepen-
dent description can continue to be used. This reduces the
effort of the user, since the user does not need to keep track of
the updates to the implementation language or update the
implementation language independent description of the user
interface component. Also, a user interface can be displayed
by means of multiple implementation languages simply by
creating sets of instructions for processing the description of
the user interface. This may be particularly advantageous if a
large number of user interface descriptions are created.

What is claimed is:

1. A computer-implemented method for displaying a user
interface component according to an implementation lan-
guage independent description of the user interface compo-
nent, the method comprising:

receiving the implementation language independent

description;

determining an implementation language for displaying

the user interface component;

determining an implementation language dependent type

of'the user interface component based on the implemen-
tation language;

processing, by a hardware processor, the implementation

language independent description, wherein the process-
ing includes creating an implementation language

20

40

45

65

22

dependent specification of the user interface component
including the implementation language dependent type;
and

displaying the user interface component according to the

implementation language dependent specification of the
user interface component.
2. The method of claim 1, further comprising compiling the
implementation language dependent specification into a
binary file.
3. The method of claim 2, wherein compiling the imple-
mentation language dependent specification comprises per-
forming, by a compiler, compilation operations on the imple-
mentation language dependent specification, wherein the
binary file is displayable by a web browser.
4. The method of claim 1, further comprising verifying
presentation semantics of the implementation language
dependent specification of the user interface component,
wherein the verifying comprises:
parsing the implementation language dependent specifica-
tion in order to select at least one presentation rule in the
implementation language dependent specification;

parsing a set of presentation rules in order to determine if
the selected presentation rule is in the set of presentation
rules;

determining that the presentation rule is invalid if the

selected presentation rule is not in the set of presentation
rules; and

determining that the presentation rule is valid if the

selected presentation rule is in the set of presentation
rules.

5. The method of claim 1, comprising:

selecting, based on a characteristic of the implementation

language independent description, a description parser
to parse the implementation language independent
description, wherein the processing includes process-
ing, by the selected description parser, the parsed imple-
mentation language independent description to create
the implementation language dependent specification.

6. The method of claim 5, wherein the characteristic is a
format of the implementation language independent descrip-
tion or is associated with receiving the implementation lan-
guage independent description.

7. The method of claim 5, wherein the characteristic
includes a delimiter of the implementation language indepen-
dent description, the implementation language independent
description is encoded in a binary format, the implementation
language independent description includes markup language
annotations, or the implementation language independent
description is received by accessing a database management
system.

8. The method of claim 5, wherein the implementation
language independent description includes a user specified
presentation attribute of the user interface component, and
parsing the implementation language independent descrip-
tion further comprises identifying the user specified presen-
tation attribute, wherein processing the parsed description
further comprises including the user specified presentation
attribute in the implementation language dependent specifi-
cation.

9. The method of claim 5, wherein parsing the implemen-
tation language independent description comprises inserting
the implementation language independent description into a
data structure.

10. The method of claim 5, further comprising

instantiating and configuring the description parser accord-

ing to an inversion of control container.

US 9,268,539 B2

23

11. The method of claim 1, wherein determining the imple-
mentation language dependent type comprises:

checking a map entry,

wherein the map entry associates the implementation lan-

guage independent type and the implementation lan-
guage dependent type.

12. The method of claim 1, wherein the implementation
language for displaying the user interface component is one
of the following: MXML, XAML, SVG, UIML, XUL, Curl,
or JavaFX.

13. The method of claim 1, further comprising

wherein displaying the user interface component includes

incorporating the implementation language dependent
specification into a wrapper, and

wherein the wrapper is written in the same implementation

language as the implementation language dependent
specification.

14. The method of claim 1, further comprising:

identifying a presentation rule corresponding to the imple-

mentation language dependent type, wherein the dis-
playing comprises displaying the user interface compo-
nent according to the presentation rule.

15. A computer system to display a user interface compo-
nent according to an implementation language independent
description of the user interface component, the system com-
prising:

a hardware processor to:

determine an implementation language to display the
user interface component;
determine an implementation language dependent type
of the user interface component based on the imple-
mentation language;
process the implementation language independent
description, wherein the processing includes
creating an implementation language dependent
specification of the user interface component
including the implementation language dependent
type of the user interface component; and
associating a presentation rule with the implementa-
tion language dependent type; and
adisplay to display the user interface component according
to the implementation language dependent specification
of the user interface component and the associated pre-
sentation rule.

16. The computer system of claim 15, wherein the proces-
sor is to select, based on a characteristic of the implementa-
tion language independent description, a description parser to
parse the implementation language independent description,
wherein the parsed implementation language independent
description is parsed to create the implementation language
dependent specification.

17. The computer system of claim 15, wherein the proces-
sor is to:

determine that the presentation rule is invalid if the selected

presentation rule is not in a set of presentation rules; and
determine that the presentation rule is valid if the selected
presentation rule is in the set of presentation rules, and

10

15

25

30

35

40

45

50

55

24

display the user interface component according to the
presentation rule if presentation rule is valid.

18. The computer system of claim 15, wherein the proces-
sor is to incorporate the implementation language dependent
specification into a wrapper to display the user interface com-
ponent, wherein the wrapper is in the same implementation
language as the implementation language dependent specifi-
cation.

19. A computer system to facilitate displaying a user inter-
face component according to an implementation language
independent description of the user interface component, the
system comprising:

a hardware processor to:

select, based on a characteristic of the implementation
language independent description, a description
parser;
receive the implementation language independent
description;
determine an implementation language for displaying
the user interface component;
parse, by the description parser, the implementation lan-
guage independent description, wherein to parse the
implementation language independent description,
the description parser is to:
identify an implementation language independent
type;
determine an implementation language dependent
type of the user interface component based on the
implementation language independent type and the
implementation language;
insert the implementation language independent
description into a data structure, wherein the data
structure includes a value object, wherein the value
object groups information for the user interface
component such that the user interface component
and its corresponding features are distinguished
from other user interface components in the value
object; and
identify a presentation rule corresponding to the
implementation language dependent type, wherein
the value object includes the implementation lan-
guage dependent type and the presentation rule;
and

process the parsed description to create an implementation

language dependent specification of the user interface
component, wherein the processing includes an associ-
ating the implementation language dependent type with
the presentation rule in the implementation language
dependent specification, wherein the user interface com-
ponent is displayable based on the implementation lan-
guage dependent specification.

20. The computer system of claim 19, wherein a binary file
is to be generated by compiling the implementation language
dependent specification.

21. The computer system of claim 20, wherein the user
interface component is displayed by a web browser process-
ing the binary file.

